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ABSTRACT

In this report, we explore the Expectation-Maximization (EM) algorithm for Gaussian Mixture Mod-
els (GMMs) and its implementation in Python using various libraries. We start with a vanilla Python
implementation, then optimize it using NumPy, Numba, and CuPy. We compare the performance
of these implementations on synthetic datasets and discuss the trade-offs involved. The results show
that both Numba and CuPy can offer significant time performance gains, whereby with access to a
CUDA-capable GPU, CuPy can offer more than ~200 times faster execution than the base Python
implementation. The report concludes with insights into the potential for significant performance
improvements in the EM algorithm through optimized and/or parallel computing techniques.

Keywords parallel computing * multicore computing * python ¢ expectation maximization

1 Introduction

High-performance computing (HPC) has revolutionized the field of scientific research, enabling the processing of large
datasets and the execution of complex simulations at unprecedented speeds. One of the key drivers of this revolution
is the use of General-Purpose Graphics Processing Units (GPGPU) and the betterment of Central Processing Units
(CPUs), which have significantly enhanced the computational capabilities of modern computers (Oliveira et al. 2017).

This report is a product of the CUSO Informatique 2023 Winter School, where the course explored the application
of parallel computing in scientific research, focusing on GPGPU and multicore computing. The winter school delved
into modern and simplified approaches to parallel programming in Python, Julia, and C++ programming languages
and illustrated their use in concrete research applications. The high-performance computing was complementarity to
an additional lecture on deep learning.

This report focuses on the Python programming aspect of the course. More specifically, how parallelization of Python
code both on the CPU and GPU can be made. To show the application of these technologies, we provide a compre-
hensive overview of the Expectation-Maximization (EM) algorithm, a powerful statistical technique used for finding
maximum likelihood estimates in probabilistic models with latent variables. This is an interesting algorithm to ex-
plore as it is not easily parallelized due to its sequential nature. We discuss the implementation of the EM algorithm
Python using different libraries that enable faster computation. We also compare the performance of these implemen-
tations, providing insights into the efficiency and effectiveness of different programming languages and computational
approaches in the context of the EM algorithm.

2 Literature Review

2.1 Python and Parallelization

Despite Python’s limitations due to its interpreted nature and the Global Interpreter Lock (GIL), it has become popular
in scientific computing due to its extensive ecosystem of scientific libraries. Table 1 summarizes these different
libraries and approaches, which have all been introduced during the winter school. The library most often used for
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numerical computations is NumPy. Practioners who use parallel computing in Python often use NumPy for data
processing due to its notable speed improvement. However, for parallelizing the code itself, there are two approaches;
multi-threading and multi-processing. Due to the GIL, multi-threading does not lead to true parallelism and is mainly
helpful for I/O-bound tasks. Conversely, multi-processing achieves true parallelism and is facilitated by Python’s
multiprocessing module.

Python also supports parallel computing through third-party libraries like Dask and Numba. Dask integrates with
existing Python APIs to enable parallel and larger-than-memory computations. Numba, a just-in-time (JIT) compiler,
translates Python and NumPy code into fast machine code at runtime, providing parallel and GPU-accelerated com-
puting support.

For GPU-accelerated computing, libraries such as CuPy and PyTorch (not discussed here) provide a NumPy-like API
for performing computations on GPUs. Python’s variety of tools and libraries for parallel and high-performance
computing, combined with its simplicity and readability, make it a viable choice for scientific computing and data

analysis tasks.

Table 1: Comparing Python libraries for fast computing

Technique Type Technique Advantages Disadvantages Hardware
Sequential Vanilla Python * Easy to * Not suitable for CPU
understand and heavy
write computational
» Extensive library tasks
support * Not natively
* Highly readable designed for
parallel execution
NumPy « Efficient array * Can only handle CPU
operations array data
* Well-optimized for effectively
performance * Not optimal for
* Provides a other complex data
high-level structures
interface
Parallel Multiprocessing e Can utilize * Inter-process CPU
multiple cores on communication can
a single machine be slow and add
for parallel overhead.
processing of * Not suitable for
tasks. distributed
* Easy to use and computing across
comes built-in multiple machines
with Python
Numba ¢ Just-in-time (JIT) e Limited support for CPU/GPU
compiler for Python and NumPy
Python features
¢ Can significantly * Can complicate the
speed up code
computation- * Overhead of JIT
intensive Python compilation.
functions
* Easy to use
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Technique Type Technique Advantages Disadvantages Hardware
CuPy * Allows execution * Requires hardware =~ GPU
of computations with a GPU
on GPU * Can be difficult to
* Supports a large set up
part of the NumPy * Some advanced
interface NumPy features

not supported

Dask * Enables parallel * Overhead of task CPU
and larger-than- scheduling
memory * Requires good
computations understanding of
* Works well with chunking for
NumPy and optimal
Pandas performance
» Handles task
scheduling
MPI (Message » Allows distributed * Can be difficult to CPU/GPU
Parsing memory debug
Interface) with parallelism * Requires a deep
mpidpy * Has a standardized understanding of
and portable parallel systems
message passing * Writing MPI code
system can be complex

2.2 Expectation Maximization (EM)

The Expectation-Maximization (EM) algorithm, introduced by Dempster, Laird, and Rubin (1977), is a powerful
statistical technique for finding maximum likelihood estimates in probabilistic models with latent variables. The
algorithm iteratively performs two steps: the Expectation (E) step, which computes the expected value of the log-
likelihood function, and the Maximization (M) step, which updates the parameters to maximize this expected value.
This process is repeated until convergence. In the context of this report, we focus on EM with the Gaussian Mixture
Model (GMM). This probabilistic model assumes all the data points are generated from a mixture of a finite number
of Gaussian distributions with unknown parameters. The EM algorithm can be mathematically described as follows:

1. Expectation (E) step: Given the current parameters of the model, the E-step computes the expected value
of the log-likelihood function. In the context of a GMM, this involves calculating so-called responsibilities,
which represent the probability that a particular Gaussian component generates a given data point. The
responsibilities are given by:
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the k' Gaussian component, NV (z,,| 115, ¥;,) is the probability density function of the k*"* Gaussian compo-
nent evaluated at the n'" data point, and K is the total number of Gaussian components.

2. Maximization (M) step: The M-step updates the parameters of the model to maximize the expected log-
likelihood found in the E-step. For a GMM, this involves updating the weights, means, and covariances of
the Gaussian components based on the responsibilities calculated in the E-step. The updated parameters are
given by:
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N . . . . .
where Ny, = > () is the effective number of data points assigned to the k" Gaussian component,

N is the total number of data points, and z,, is the n*" data point. The EM algorithm alternates between
the E and M steps until the parameters converge, which is typically determined by a small change in the
log-likelihood from one iteration to the next.

In high-performance computing, the EM algorithm presents an interesting case study due to its iterative nature and
the potential for parallelization in the E-step. Several studies have explored the parallelization of the EM algorithm,
demonstrating significant speedups. For instance, Dean and Ghemawat (2008) presented a parallel implementation
of the EM algorithm using the MapReduce programming model. Lee, Leemaqz, and McLachlan (2016) provided
similar ideas for multi-threading, which require minimal changes to the sequential implementation. In another study,
Zhang, Li, and Rastogi (2010) proposed a GPU-based parallel EM algorithm for Gaussian Mixture Models. They
demonstrated that GPU-based implementation could achieve up to 45 times faster than CPU-based.

More recently, the rise of modern programming languages like Python, Julia, and C++ has opened up new possibilities
for parallel computing. These languages offer various libraries and tools for parallel programming, such as Numba,
which can accelerate the EM algorithm (Chou et al. 2011).

3 Implementation

This report will explore widely used Python-based libraries built on top of faster languages such as C++ for parallel
CPU and GPU computing. The GPU implementations run on CUDA programming language, a subset of C++ used
for GPU parallel computing to enhance the speed performance of the EM algorithm. The implementation of the EM
algorithm is done with the following libraries:

* Vanilla (base) Python and NumPy for sequential execution.

* Multiprocessing was initially experimented with for CPU-based parallel computing but was not included later
in the report due to failing to achieve performance gains.

* Numba: A just-in-time Python compiler that provides parallelization and machine-specific optimizations.

* CuPy for GPU-based parallel computing.

3.1 Data generation

We first generate some data to test our models. We want a multi-modal distribution for our data to assess how effec-
tively EM can capture the different means and standard deviations. Additionally, a Gaussian mixture model (GMM)
approach was chosen as it allows further parallelization opportunities for the data.

import numpy as np

import matplotlib.pyplot as plt
import random

from numba import njit, prange

# Generate data
def generate_data(n, means, stds, weights, num_mixtures, use_numpy=True):
random.seed (0)
if use_numpy:
np.random.seed(0)
mixture_idx = np.random.choice(num_mixtures, size=n, p=weights)
y = np.fromiter((np.random.normal (means[i], stds[i]) for i in mixture_idx), dtype=np.float64)
else:
mixture_idx = [random.choices(range(num_mixtures), weights) [0] for
y = [random.gauss(means[i], stds[i]l) for i in mixture_idx]
return y

in range(n)]

3.2 Vanilla Python (base)

The base Python implementation of the EM algorithm uses standard Python data structures and control flow constructs,
making it easy to understand and modify. However, due to Python’s interpreted nature, this implementation may not
be the most efficient for large datasets or complex models. The base Python implementation serves as a reference for
the more optimized versions of the algorithm implemented using libraries such as NumPy and CuPy.

In this implementation, the E-step and M-step of the EM algorithm are implemented as separate functions, e_step_py
and m_step_py, respectively. The e_step_py function computes the responsibilities for each data point and each
mixture component using a nested loop. In contrast, the m_step_py function updates the parameters of the mixture
components based on these responsibilities. The log-likelihood of the data given the current parameters is computed
in the compute_log_likelihood_py function. The primary em_py function iterates these steps until convergence,
keeping track of the log-likelihood at each step to monitor the progress of the algorithm.
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# Vanilla python EM

import time

import math

# from math import pi, sqrt, exp, log

# Define a normal_pdf function

def normal_pdf(x, mean, std_dev):
"""Calculate normal density function for a given x, mean and standard deviation.
return (1.0 / (std_dev * ((2*math.pi)#**0.5))) * math.exp(-0.5 * ((x - mean) / std_dev)*x2)

def e_step_py(data, means, stds, weights, num_mixtures):
"""E-step: compute responsibilities."""
resp = []
for i in range(num_mixtures):
resp.append([weights[i] * normal_pdf(d, means[i], stds[il) for d in datal)
resp_sum = [sum(r) for r in zip(xresp)]
resp = [[r / s for r, s in zip(respl[i], resp_sum)] for i in range(num_mixtures)]
return resp

def m_step_py(data, resp, num_mixtures):

"""M-step: update parameters."""

means = [sum(r * d for r, d in zip(resp[il, data)) / sum(respl[i]) for i in range(num_mixtures)]

stds = [math.sqrt(sum(r * (d - means[i]) ** 2 for r, d in zip(resplil, data)) / sum(resp[il)) for i in
< range(num_mixtures)]

weights = [sum(r) / len(data) for r in respl

return means, stds, weights

def compute_log_likelihood_py(data, means, stds, weights, num_mixtures):
"""Compute the log-likelihood."""
11 = sum(math.log(sum(weights[i] * normal_pdf(d, means[i], stds[i]) for i in range(num_mixtures))) for d in data)
return 11

def em_py(data, means, stds, weights, num_mixtures, num_iter=100):

"""EM algorithm."""

start_time = time.time()

log_likelihoods = []

for _ in range(num_iter):
resp = e_step_py(data, means, stds, weights, num_mixtures)
means, stds, weights = m_step_py(data, resp, num_mixtures)
11 = compute_log_likelihood_py(data, means, stds, weights, num_mixtures)
log_likelihoods.append(11)
print("Vanilla Py step", _, "Log-likelihood:", 11)

end_time = time.time()

elapsed_time = end_time - start_time

return means, stds, weights, elapsed_time, log_likelihoods

3.3 NumPy

The NumPy implementation of the EM algorithm takes advantage of the efficient array operations provided by the
NumPy library to speed up the computation. NumPy is a Python library that provides support for large, multi-
dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays. Using
NumPy, we can replace explicit loops with vectorized operations implemented in compiled C code for performance.

In the NumPy implementation, the E-step and M-step are implemented in the e_step_numpy and m_step_numpy
functions, respectively. These functions use NumPy’s array broadcasting and aggregation functions to compute the
responsibilities and update the parameters in a vectorized manner. The compute_log_likelihood_numpy function
computes the log-likelihood of the data given the current parameters using NumPy functions. The main em_numpy
function iterates these steps until convergence, similar to the base Python implementation. However, due to using
NumPy’s array operations, this implementation is expected to be significantly faster for large datasets.

def normal_pdf (x, mean, std_dev):
"""Calculate normal density function for a given x, mean and standard deviation.
return (1.0 / (std_dev * ((2*%np.pi)**0.5))) * np.exp(-0.5 * ((x - mean) / std_dev)**2)

def e_step_numpy(data, means, stds, weights, num_mixtures):
"""E-step: compute responsibilities."""
resp = np.empty((num_mixtures, len(data)))
for i in range(num_mixtures):
respl[i, :] = weights[i] * normal_pdf(data, means[i], stds[il)
resp /= resp.sum(axis=0)
return resp

def m_step_numpy(data, resp, num_mixtures) :
"""M-step: update parameters."""
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means = np.sum(resp * data, axis=1) / np.sum(resp, axis=1)

stds = np.sqrt(np.sum(resp * (data - means[:, None]) ** 2, axis=1) / np.sum(resp, axis=1))
weights = np.mean(resp, axis=1)

return means, stds, weights

def compute_log_likelihood_numpy(data, means, stds, weights, num_mixtures):
"""Compute the log-likelihood."""
11 =0
for i in range(num_mixtures):
11 += weights[i] * normal_pdf (data, mean=means[i], std_dev=stds[i])
11 = np.sum(np.log(1l))
return 11

def em_numpy(data, means, stds, weights, num_mixtures, num_iter=100, print_output=True):
"""EM algorithm."""
start_time = time.time()
log_likelihoods = []
for _ in range(num_iter):
resp = e_step_numpy(data, means, stds, weights, num_mixtures)
means, stds, weights = m_step_numpy(data, resp, num_mixtures)
11 = compute_log_likelihood_numpy(data, means, stds, weights, num_mixtures)
log_likelihoods.append(11)
if print_output:
print ("NumPy step", _, "Log-likelihood:", 11)
end_time = time.time()
elapsed_time = end_time - start_time
return means, stds, weights, elapsed_time, log_likelihoods

3.4 Numba

Numba is a just-in-time (JIT) compiler for Python that translates a subset of Python and NumPy code into fast machine
code. It uses the LLVM compiler infrastructure to generate optimized machine code from pure Python. This can lead
to significant performance improvements for numerical computations, particularly CPU-bound tasks.

In the context of the EM algorithm, Numba can accelerate the computation of responsibilities in the E-step and the pa-
rameter updates in the M-step. The @njit decorator compiles the functions that perform these computations, allowing
them to be executed as fast machine code. Additionally, the parallel=True option enables automatic parallelization
of these functions, further improving performance on multicore CPUs.

The compute_resp function is defined to compute the responsibilities for a single data point and mixture component.
This function is then used in the e_step_numba and m_step_numba functions, which are parallelized using Numba’s
automatic parallelization feature. This allows the responsibilities to be computed and the parameters to be updated
concurrently for different data points and mixture components, leading to a significant speedup.

The main em_numba function iterates the E-step and M-step until convergence or a maximum number of iterations is
reached, similar to the previous implementations. However, due to the use of Numba’s JIT compilation and automatic
parallelization, this implementation is expected to be significantly faster, particularly for large datasets.

from numba import jit, njit, prange

Qjit

def normal_pdf(x, mean, std_dev):
"""Calculate normal density function for a given x, mean and standard deviation."""
return (1.0 / (std_dev * ((2*np.pi)**0.5))) * np.exp(-0.5 * ((x - mean) / std_dev)**2)

Qjit
def compute_resp(data, means, stds, weights, i, j):
return weights[i] * normal_pdf (dataljl, means[il, stds[i])

@jit(parallel=True)
def e_step_numba(data, means, stds, weights, num_mixtures):
resp = np.empty((num_mixtures, len(data)))
for i in prange(num_mixtures):
for j in range(len(data)):
resp[i, j] = compute_resp(data, means, stds, weights, i, j)
sum_resp = np.sum(resp, axis=0)
for i in prange(num_mixtures):
for j in range(len(data)):
respli, j]l /= sum_respl[j]
return resp

@jit(parallel=True)
def m_step_numba(data, resp, num_mixtures):
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means = np.zeros(num_mixtures)
stds = np.zeros(num_mixtures)
weights = np.zeros(num_mixtures)
for i in prange(num_mixtures):
resp_sum = np.sum(respl[i, :])
weighted_sum = np.sum(respl[i, :] * data)
means[i] = weighted_sum / resp_sum
stds[i] = np.sqrt(np.sum(respl[i, :] * (data - means[i]) #** 2) / resp_sum)
weights[i] = resp_sum / resp.shape[1]
return means, stds, weights

def em_numba(data, means, stds, weights, num_mixtures, num_iter=100, print_output=True):
start_time = time.time()
log_likelihoods = []
for _ in prange(num_iter):
resp = e_step_numba(data, means, stds, weights, num_mixtures)
means, stds, weights = m_step_numba(data, resp, num_mixtures)
11 = compute_log_likelihood_numpy(data, means, stds, weights, num_mixtures)
log_likelihoods.append(11)
if print_output:
print ("Numba step", _, "Log-likelihood:", 11)
end_time = time.time()
elapsed_time = end_time - start_time
return means, stds, weights, elapsed_time, log_likelihoods

3.5 CuPy

CuPy is a GPU-accelerated library for numerical computations in Python. It provides a NumPy-like API, but all com-
putations are performed on the GPU. This allows for significant performance improvements for large-scale numerical
computations, as GPUs can perform many computations concurrently.

In the context of the EM algorithm, CuPy can accelerate the computation of responsibilities in the E-
step and the parameter updates in the M-step. The normal_pdf_cupy, e_step_cupy, m_step_cupy, and
compute_log_likelihood_cupy functions are defined similarly to their NumPy counterparts but use CuPy func-
tions instead of NumPy functions. This allows these computations to be performed on the GPU, leading to a significant
speedup for large datasets.

The main em_cupy function iterates the E-step and M-step until convergence or a maximum number of iterations is
reached, similar to the previous implementations. However, due to the use of CuPy’s GPU-accelerated computations,
this implementation is expected to be significantly faster, particularly for large datasets.

It is important to note that while CuPy can provide significant speedups for large-scale numerical computations, it also
requires a compatible GPU. Furthermore, data transfer between the CPU and GPU can introduce additional overhead,
limiting the speedup achievable by GPU acceleration. Therefore, it is crucial to benchmark the performance of the
CuPy implementation against the other implementations for a given dataset and hardware configuration to determine
the optimal approach.

import cupy as cp
def normal_pdf_cupy(x, mean, std_dev):

"""Calculate normal density function for a given x, mean and standard deviation.
return (1.0 / (std_dev * ((2*%cp.pi)**0.5))) * cp.exp(-0.5 * ((x - mean) / std_dev)**2)

wnn

def e_step_cupy(data, means, stds, weights, num_mixtures):
"""E-step: compute responsibilities."""
resp = cp.empty((num_mixtures, len(data)))
for i in range(num_mixtures):
resp[i, :] = weights[i] * normal_pdf_cupy(data, means[i], stds[il)
resp /= resp.sum(axis=0)
return resp

def m_step_cupy(data, resp, num_mixtures):
"""M-step: update parameters."""
means = cp.sum(resp * data, axis=1) / cp.sum(resp, axis=1)
stds = cp.sqrt(cp.sum(resp * (data - means[:, None]) ** 2, axis=1) / cp.sum(resp, axis=1))
weights = cp.mean(resp, axis=1)
return means, stds, weights

def compute_log_likelihood_cupy(data, means, stds, weights, num_mixtures):
"""Compute the log-likelihood."""
11 =0
for i in range(num_mixtures):
11 += weights[i] * normal_pdf_cupy(data, mean=means[i], std_dev=stds[i])
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11 = cp.sum(cp.log(1l))
return 11

def em_cupy(data, means, stds, weights, num_mixtures, num_iter=100):

"""EM algorithm."""

start_time = time.time()

log_likelihoods = []

for _ in range(num_iter):
resp = e_step_cupy(data, means, stds, weights, num_mixtures)
means, stds, weights = m_step_cupy(data, resp, num_mixtures)
11 = compute_log_likelihood_cupy(data, means, stds, weights, num_mixtures)
log_likelihoods.append(11)
print ("CuPy step", _, "Log-likelihood:", 11)

end_time = time.time()

elapsed_time = end_time - start_time

return means, stds, weights, elapsed_time, log_likelihoods

4 Results

4.1 Data generation

We generate the data for the means, standard deviations, and weights. This involves creating data using both Python
lists and NumPy arrays for comparison purposes. The generated data is visualized in Figure 1, showing the distribution
of data points with both approaches.

# Set the number of instances with means, stds, and weights to generate
n = 1000000

means = [0, 5, 10, 3]

stds = [1, 1, 1,0.5]

weights = [0.3, 0.3, 0.3, 0.1]

num_mixtures = len(weights)

data = generate_data(n, means, stds, weights, num_mixtures, use_numpy=False)
data_numpy = generate_data(n, means, stds, weights, num_mixtures, use_numpy=True)
# data_cupy = cp.asarray(data_numpy) #only enable if you have a CUDA-enabled GPU (and imported ~cupy)

# Create subplots
fig, axs = plt.subplots(l, 2, sharey=True, tight_layout = True)

# Draw the data for Python list
axs[0] .hist(data, bins=100, density=True)
axs[0].set_title("(a) Python list")

# Draw the data for numpy
axs[1] .hist(data_numpy, bins=100, density=True)
axs[1].set_title("(b) NumPy")

plt.show()
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(a) Python list (b) NumPy
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Figure 1: Generated data with 4 Gaussian mixtures

4.2 Executing different implementations

We execute the EM algorithm using different implementations: vanilla Python, NumPy, Numba, and CuPy. The
initial parameters for the model are set, and the EM algorithm is run for a specified number of iterations. The results,
including the estimated means, standard deviations, weights, and execution time, are printed for each implementation.
Here is a high-level summary of each implementation:

* Vanilla Python EM: This is the simplest form of the algorithm, implemented using basic Python data struc-
tures and operations. It is likely to be the slowest version, particularly for large datasets, as Python is an
interpreted language and can be slow for large-scale numerical computation.

e NumPy: This version replaces Python lists with NumPy arrays and uses NumPy operations for the E-step
and M-step. Since NumPy operations are implemented in C and can take advantage of vectorized operations,
this version should be much faster than the vanilla Python version.

* Numba: This version uses the Numba library to compile the E-step and M-step functions to machine code
at runtime (a process known as ‘just-in-time’ compilation). This should make these functions much faster,
particularly for large datasets.

* CuPy: This version replaces NumPy arrays with CuPy arrays, which are similar but run on a GPU instead
of a CPU. This means the algorithm can take advantage of the massively parallel architecture of modern
GPUs, which should be significantly faster than any CPU-based version for large datasets. Please note that
the GPU-based version (CuPy) requires a compatible NVIDIA GPU and the CUDA toolkit to be installed on
the machine running the code. Additionally, not all operations might be faster on GPU due to the overhead
of moving data between the CPU and GPU. It is usually beneficial when the computational cost is high, and
the data can be processed in parallel.

To test our implementations, we first initialize some information for the model parameters:

# Initial parameters

means_init = [-1, -3, 11, 4]
stds_init = [1, 1, 1, 0.5]

parts = len(means_init)
weights_init = [(1/parts)] * parts
num_iter = 10

Please note that we use Python lists and not NumPy arrays for the base Python implementation to ensure that the
comparison is fair.

# Run EM algorithm with vanilla Python
means_py, stds_py, weights_py, elapsed_time_py, log_likelihoods_py = em_py(
data, means_init, stds_init, weights_init, num_mixtures, num_iter



)

# Make the initial means also into NumPy arrays

means_init =
stds_init =
weights_init =

np.array(means_init)
np.array(stds_init)
np.array(weights_init)

# Run EM algorithm with NumPy

means_numpy, stds_numpy, weights_numpy, elapsed_time_numpy, log_likelihoods_numpy =

means_numpy, stds_numpy, weights_numpy, elapsed_time_numpy, log_likelihoods_numpy =

)
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em_numpy (

data_numpy[:lOO], means_init, stds_init, weights_init, num_mixtures, num_iter,
print_output=False

em_numpy (

data_numpy, means_init, stds_init, weights_init, num_mixtures, num_iter

# Run EM algorithm with Numba
# Warm-up run

means_numba, stds_numba, weights_numba, elapsed_time_numba, log_likelihoods_numba =
data_numpy[:100], means_init, stds_init, weights_init, num_mixtures, num_iter,

)

means_numba, stds_numba, weights_numba, elapsed_time_numba, log_likelihoods_numba

)

em_numba (
print_output=False

= em_numba (

data_numpy, means_init, stds_init, weights_init, num_mixtures, num_iter

# Run EM algorithm with CuPy (only works with CUDA-enabled GPU)
# means_cupy, stds_cupy, weights_cupy, elapsed_time_cupy, log_likelihoods_cupy = em_cupy(
data_cupy, means_init, stds_init, weights_init, num_mixtures, num_iter

#

#)

print("-" * 50)

# Print results

print ("Python:\n\tmeans =", means_py, "\n\tstds =", stds_py, "\n\tweights =", weights_py,
"\n\ttime =", elapsed_time_py, "s")
print ("NumPy:\n\tmeans =", means_numpy, "\n\tstds =", stds_numpy, "\n\tweights =", weights_numpy,
"\n\ttime =", elapsed_time_numpy, "s")
print ("Numba:\n\tmeans =", means_numba, "\n\tstds =", stds_numba, "\n\tweights =", weights_numba,
"\n\ttime =", elapsed_time_numba, "s")
# print("CuPy:\n\tmeans =", means_cupy, "\n\tstds =", stds_cupy, "\n\tweights =", weights_cupy,
# "\n\ttime =", elapsed_time_cupy, "s")
Vanilla Py step O Log-likelihood: -2582154.77915232
Vanilla Py step 1 Log-likelihood: -2564856.1762425895
Vanilla Py step 2 Log-likelihood: -2557584.567868932
Vanilla Py step 3 Log-likelihood: -2555382.033204309
Vanilla Py step 4 Log-likelihood: -2554632.264487238
Vanilla Py step 5 Log-likelihood: -2554285.7716815015
Vanilla Py step 6 Log-likelihood: -2554092.1019310234
Vanilla Py step 7 Log-likelihood: -2553973.2082615434
Vanilla Py step 8 Log-likelihood: -2553896.8185001
Vanilla Py step 9 Log-likelihood: -2553846.817178973
NumPy step O Log-likelihood: -2581404.2614397113
NumPy step 1 Log-likelihood: -2564104.366757368
NumPy step 2 Log-likelihood: -2556997.094354966
NumPy step 3 Log-likelihood: -2554859.354924514
NumPy step 4 Log-likelihood: -2554117.8439922435
NumPy step 5 Log-likelihood: -2553769.4140029433
NumPy step 6 Log-likelihood: -2553573.186908773
NumPy step 7 Log-likelihood: -2553452.491059332
NumPy step 8 Log-likelihood: -2553375.025107684
NumPy step 9 Log-likelihood: -2553324.4228862813
Numba step O Log-likelihood: -2581404.261439898
Numba step 1 Log-likelihood: -2564104.366757518
Numba step 2 Log-likelihood: -2556997.0943550174
Numba step 3 Log-likelihood: -2554859.354924579
Numba step 4 Log-likelihood: -2554117.8439923525
Numba step 5 Log-likelihood: -2553769.4140030583
Numba step 6 Log-likelihood: -2553573.186908894
Numba step 7 Log-likelihood: -2553452.491059437
Numba step 8 Log-likelihood: -2553375.025107807
Numba step 9 Log-likelihood: -2553324.4228864308
Python:
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means = [0.0021209458942941864, -1.249459098609342, 10.025028819197471, 4.4264578305478075]
stds = [0.9055451139404085, 0.7863787913320834, 0.9752345182287612, 1.3935990569916035]
weights = [0.26646033075274256, 0.018873722563199572, 0.29580849955158667, 0.4188574471635171]
time = 34.50395965576172 s
NumPy:
means = [-1.14831737e-03 -1.25025853e+00 1.00261527e+01 4.42142995e+00]
stds = [0.90286045 0.78567263 0.97483005 1.39435329]
weights = [0.26562812 0.01881812 0.29643972 0.41911404]
time = 1.009819507598877 s
Numba:
means = [-1.14831737e-03 -1.25025853e+00 1.00261527e+01 4.42142995e+00]
stds = [0.90286045 0.78567263 0.97483005 1.39435329]
weights = [0.26562812 0.01881812 0.29643972 0.41911404]
time = 0.5956037044525146 s

4.3 Visualizations

We visualize the convergence of the EM algorithm by plotting the log-likelihood against the number of iterations.
Figure 2 shows that the algorithm slowly converges, and there is no significant difference in the log-likelihood between
the different implementations. In terms of time, we see that NumPy significantly increases performance. Then, using
NumPy, the numba approach shows even further improvement. It must be noted that Numba is significantly faster
than the other techniques, which comes by adding the @jit decorators and the parallel=True to existing functions
to enable machine-optimized and parallelized execution.

# Plot the convergence

plt.plot(log_likelihoods_py, label=f'Vanilla Python (ET: {elapsed_time_py:.2f} sec)')
plt.plot(log_likelihoods_numpy, label=f'NumPy (ET: {elapsed_time_numpy:.2f} sec)')
plt.plot(log_likelihoods_numba, label=f'Numba (ET: {elapsed_time_numba:.2f} sec)')

# log_likelihoods_cupy_np = [item.get() for item in log_likelihoods_cupy]

# plt.plot(log_likelihoods_cupy_np, label=f'CuPy (ET: {elapsed_time_cupy:.2f} sec)')
plt.title('Convergence of EM algorithm')

plt.xlabel('Iteration')

plt.ylabel('Log-likelihood')

plt.legend()

plt.show()
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Figure 2: Log-likelihood and time convergence of the different algorithms

We also compare the actual and estimated probability density functions (PDFs) for the different implementations
(Figure 3). The plots show that all implementations produce similar estimates, confirming the correctness of the
implementations.
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from scipy.stats import norm

# Compute the actual and estimated PDFs

x = np.linspace(min(data), max(data), 1000)

pdf_actual = sum(w * norm.pdf(x, m, s) for m, s, w in zip(means, stds, weights))

pdf_py = sum(w * norm.pdf(x, m, s) for m, s, w in zip(means_py, stds_py, weights_py))

pdf_numpy = sum(w * norm.pdf(x, m, s) for m, s, w in zip(means_numpy, stds_numpy, weights_numpy))
pdf_numba = sum(w * norm.pdf(x, m, s) for m, s, w in zip(means_numba, stds_numba, weights_numba))
# Uncommonet if running also the cupy approach (this ensure the compatibility of the data type)

# means_cupy = cp.asnumpy (means_cupy)

# stds_cupy = cp.asnumpy(stds_cupy)

# weights_cupy = cp.asnumpy(weights_cupy)

# pdf_cupy = sum(w * norm.pdf(x, m, s) for m, s, w in zip(means_cupy, stds_cupy, weights_cupy))
# Plot the actual and estimated PDFs

plt.hist(data, bins=100, density=True, alpha=0.5, label='Actual')

plt.plot(x, pdf_actual, 'k-', label='Actual')

plt.plot(x, pdf_py, 'r-', label='Vanilla Python')

plt.plot(x, pdf_numpy, 'b-', label='NumPy')

plt.plot(x, pdf_numba, 'y-', label='Numba')

# plt.plot(x, pdf_cupy, 'g-', label='CuPy')

plt.title('Actual vs. Estimated Distributions')

plt.legend()

plt.show()
Actual vs. Estimated Distributions
0.12 1 Actual
Actual
0.10 A Vanilla Python
NumPy
0.08 - Numba
0.06 A
0.04 1
0.02 1
0.00 T "'"'///l T T T T T T
-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

Figure 3: Actual vs predicted distributions

As we could not test the CuPy approach locally, a Jupyter notebook was re-created on Google Co-
lab, which provides CUDA-enabled GPUs. The notebook can be found here https://drive.google.com/file/d/
1kdwuWsqTel 7TFCOLynGdRPdahUkAwTulv/view?usp=sharing and results have been portrayed in Figure 4. When
adding CuPy to the comparison, Figure 4a shows that EM can be executed more than ~200 times fasters, provided that
a CUDA-enabled GPU is available. From a software standpoint, this requires some changes from NuPy to CuPy; how-
ever, as the syntax is very close, the required changes are negligible. Additionally, the sub-figure Figure 4b confirms
that the results are consistent.

5 Conclusion

In this report, we have explored the Expectation-Maximization (EM) algorithm for Gaussian Mixture Models and
implemented it using various Python libraries to optimize its performance. The vanilla Python implementation, while
being the most straightforward, was also the slowest due to Python’s interpreted nature and lack of vectorized opera-
tions. The NumPy implementation improved upon this by utilizing vectorized operations and C-optimized computa-
tions, resulting in a significant speedup. The Numba implementation, which uses just-in-time compilation to optimize
the runtime code, provided further speed improvements. Finally, we explored using CuPy, a GPU-accelerated library,
for numerical computations. While we did not run the CuPy code locally due to hardware constraints, the Google
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Figure 4: Results from Google Colab with CuPy included

Colab results showed that it provides significant speedups for large datasets due to the massively parallel architecture
of modern GPUs.

In conclusion, while the optimal approach depends on the specific dataset and hardware configuration, this report
demonstrates the potential for significant performance improvements in the EM algorithm using optimized Python
libraries and parallel computing techniques. Our parallelization may not be optimal, and adapting other implementa-
tions, such as Lee, Leemaqz, and McLachlan (2016), can help improve the results. Lastly, it is essential to benchmark
different approaches with a different number of observations and parameters to evaluate the consistency of the results.
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